

Stem cells display circadian clocks?

By Tran Hong Thuan

II. Circadian clocks

II. Circadian clocks is presented in SCs?

CCGs: clock-controlled genes

Circadian genes express in stem cells and modulate cell proliferation/differentiation

→ Circadian genes expressed in human embryonic stem cells and during differentiation

Soumyaa Thakur, et al. 2020

Circadian genes express in stem cells and modulate cell proliferation/differentiation

Amador Gallardo, et al., 2020

Bmal1–/– mouse embryonic stem cells (mESCs) display reduced induction of ectoderm, endoderm, and mesoderm genes during monolayer cell differentiation.

Bmal1–/– mouse embryonic stem cells (mESCs) display altered pluripotency signaling pathways and differentiation potential expression.

BMAL1 coordinates energy metabolism and differentiation of pluripotent stem cells

- → the circadian clockworks have detected their expression in several types of stem cells, which may affect stemness, differentiation, and signaling pathway genes
- \rightarrow No rhythms

1) Whether circadian rhythms be established by cyclic 24-hour light/dark periods?

- 2) Whether circadian clockwork be oscillated in diurnal periods?
- **3)** Whether the cell proliferation is impacted by LD cycles?

Light-mediated control of Gene expression in cell culture

Jordan E. P., et al. 2017

Distribution of vinculin tension in Mesenchymal Stem Cells

Cell type	Gene(s)
Rod photoreceptors	NR2E3, NRL (wild type cells only), GNGT1, SAG
Cone photoreceptors	PDE6H, ARR3, OPN1MW, OPN1SW, GUCA1C, GNAT2
Bipolar cells	VSX1, VSX2, TMEM215, ISL1
Photoreceptor/Bipolar precursors	CRX, OTX2, PRDM1, VSX1
Amacrine cells	TFAP2A, GAD1, GAD2, CALB2
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Horizontal cells	ONECUT1, ONECUT2, TFAP2B, PROX1
Horizontal cells Retinal ganglion cells	ONECUT1, ONECUT2, TFAP2B, PROX1 SLC17A6, GAP43, NEFL, NEFM
Horizontal cells Retinal ganglion cells Muller glia	ONECUT1, ONECUT2, TFAP2B, PROX1 SLC17A6, GAP43, NEFL, NEFM SOX2, SOX9, VIM, CLU, DKK3

Yamada M., et al., 2019

Targeted illumination with a digital mirror device (DMD). (A) Schematic illustration of patterned light generation by DMD. A DMD is a digital imaging chip that reflects light to project and display a certain pattern of the light. It consists of a mirror array of up to 2 million units, each one individually controlled. (B) An example of the targeted cell populations illuminated by patterned light generated by a DMD. The patterned light, indicated by blue lightning symbols, was applied to 10 targeted cells (Cells 1–10) simultaneously, and their light-induced reporter expression was monitored

RESEARCH ARTICLE | BIOLOGICAL SCIENCES |

f 🎽 in 🖾

Modeling early retinal development with human embryonic and induced pluripotent stem cells

Jason S. Meyer, Rebecca L. Shearer, Elizabeth E. Capowski, +4 , and David M. Gamm 🖾 Authors Info & Affiliations

Edited by James Thomson, University of Wisconsin, Madison, WI, and approved July 23, 2009

September 29, 2009 106 (39) 16698-16703 <u>https://doi.org/10.1073/pnas.0905245106</u>

Differentiation is driven by the circadian system?

THANKS FOR YOUR ATTENTION ③